Lecture Sections

- Noise Induced Hearing Loss
- Presbycusis: Definitions and Measurement
- Hearing Handicap Determination & Medical Legal Concerns
- Client Evaluation
Noise Induced Hearing Loss
- Characteristics

- Sensory hearing loss with loss of discrimination commensurate with the loss in hearing.
- Maximum in the high frequencies sometimes with a 4000 Hz Notch.
- 23% will have tinnitus (Phoon WH, 1983)
- Vertigo is not present
Noise Induced Hearing Loss
- Characteristics

♦ After 10 years of exposure, the damage caused by noise remains constant, but presbycusis progresses as predicted.

Noise Induced Hearing Loss - Noise Levels

- Individuals have different susceptibilities to noise. (Kyong-Myong Chon, 1996)
- Noise levels are measured in dB SPL on the A Scale.
- Impulse Noise is more damaging than a constant noise.
Two Different Recommended Maximum Exposure Levels

- **OSHA**
 - 25% chance of developing NIHL with a 40-year lifetime exposure

- **NIOSH**
 - 8% chance of developing NIHL with a 40-year lifetime exposure
Two Different Recommended Maximum Exposure Levels

- **OSHA Maximum Exposure**
 \[= \frac{16}{((\text{dB} - 85)/5)^2} \]

- **NIOSH Maximum Exposure**
 \[= \frac{16}{((\text{dB} - 82)/3)^2} \]
Noise Levels

<table>
<thead>
<tr>
<th>Duration of Exposure (hrs/day)</th>
<th>Sound Level dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACGIH</td>
</tr>
<tr>
<td>16</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>1/2</td>
<td>97</td>
</tr>
<tr>
<td>1/4</td>
<td>100</td>
</tr>
<tr>
<td>1/8</td>
<td>103</td>
</tr>
</tbody>
</table>

**
Noise Induced Hearing Loss

- Levels of Environmental Sounds

<table>
<thead>
<tr>
<th>Source--Dangerous Level</th>
<th>dBA SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produces Pain</td>
<td>140-150</td>
</tr>
<tr>
<td>Jet Aircraft During Takeoff (at 20 meters)</td>
<td>130</td>
</tr>
<tr>
<td>Discomfort Level</td>
<td></td>
</tr>
<tr>
<td>Snowmobile</td>
<td>120</td>
</tr>
<tr>
<td>Tractor Without Cab</td>
<td></td>
</tr>
<tr>
<td>Rock Concert</td>
<td>110</td>
</tr>
<tr>
<td>Die Forging Hammer</td>
<td></td>
</tr>
<tr>
<td>Gas Weed-Wacker</td>
<td>100-105</td>
</tr>
<tr>
<td>Chain Saw</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Drill</td>
<td></td>
</tr>
<tr>
<td>Home Lawn Mowers</td>
<td>95 to 100 dB</td>
</tr>
<tr>
<td>Semi-trailers (at 20 meters)</td>
<td>90</td>
</tr>
</tbody>
</table>
Noise Induced Hearing Loss
- Levels of Environmental Sounds

<table>
<thead>
<tr>
<th>Source—Safe Levels</th>
<th>dBA SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Traffic</td>
<td>80</td>
</tr>
<tr>
<td>Automobile (at 20 meters)</td>
<td>70</td>
</tr>
<tr>
<td>Vacuum Cleaner</td>
<td>65</td>
</tr>
<tr>
<td>Conversational Speech (at 1 meter)</td>
<td>60</td>
</tr>
<tr>
<td>Quiet Business Office</td>
<td>50</td>
</tr>
<tr>
<td>Residential Area at Night</td>
<td>40</td>
</tr>
<tr>
<td>Whisper, Rustle of Leaves</td>
<td>20</td>
</tr>
<tr>
<td>Rustle of Leaves</td>
<td>10</td>
</tr>
<tr>
<td>Threshold of Audibility</td>
<td>0</td>
</tr>
</tbody>
</table>
Presbycusis

- Pure Presbycusis refers to the hearing loss which occurs with physiological aging. Schuknecht divided "Pure Presbycusis" into sensory, neural, strial (metabolic) and cochlear conductive.

- Nosocusis refers to hearing loss caused by other factors than noise and pure presbycusis (aging).

- Sociocusis non-work related noise induced hearing loss.
Presbycusis

- Accounting for presbycusis is not mandatory but it is often done in the legal setting. What is actually sought is to account for non-occupational hearing loss. Seven states allow deductions for presbycusis.
- Or to answer the question: Is the progression of hearing loss in the worker more than which can be expected from non-occupational hearing loss?
Presbycusis

♦ NIOSH does NOT recommend accounting for presbycusis when looking for Medical Causation of a progressive hearing loss. If a worker has a progressive hearing loss it is assumed to be due to noise trauma and corrective measures should be taken.

♦ However, estimation of presbycusis is used for compensation purposes. The test for compensation is whether the hearing loss is medically more likely than not caused by noise exposure.
Presbycusis
--Sex Difference

✦ Several researchers have studied primitive cultures to determine the influence of aging on hearing acuity in the absence of occupational noise. These studies found aging effects on hearing, but observed no sex difference in the hearing loss. Goycoolea MV, 1986; Rosen S, 1962

✦ Animal studies have also found no sex difference. Hunter KP, 1987

✦ It has been proposed that the difference between male and female thresholds as a function of age, is due to environmental factors. The most important of which is noise exposure. Kryter KD, 1983
Presbycusis
--Sex Difference

However, Spoor's Equations (1967) and Robinson Sutton's (1979) Data in ISO-1999 Annex A were derived from populations screened for noise induced hearing loss and there is still a marked difference between the sexes. Rosenhall (1990) also found a gender difference when noise exposure was compensated for.
Presbycusis
--Measurement

- Robinson Sutton's Equations: These equations were derived by combining a number of studies and are adopted for the values in ISO-1999 Annex A

- Spoor's Equations: Combined data from 8 different studies. Spoor accounted and controlled for noise in the derivations of his equations.

- OSHA (Occupational Safety and Health Administration) has published correction values for aging. These values will correct threshold frequencies of 1000 Hz to 6000 Hz. Since no values are given for 500 Hz, this method can only be used with the NIOSH and Wisconsin equations.
Determination of a hearing impairment from an audiogram is performed by one of the predefined equations. The equation selected is often dictated by statute, not by medical opinion.
Handicap Equations

<table>
<thead>
<tr>
<th>Formula</th>
<th>Frequencies (Hz)</th>
<th>Low Fence (dB)</th>
<th>High Fence (dB)</th>
<th>Better Ear Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO 1979</td>
<td>500, 1000, 2000, 3000</td>
<td>25</td>
<td>92</td>
<td>5 : 1</td>
</tr>
<tr>
<td>AAOO 1959</td>
<td>500, 1000, 2000</td>
<td>25</td>
<td>92</td>
<td>5 : 1</td>
</tr>
<tr>
<td>NIOSH-FECA 1972</td>
<td>1000, 2000, 3000</td>
<td>25</td>
<td>92</td>
<td>5 : 1</td>
</tr>
<tr>
<td>NIOSH-1997</td>
<td>1000, 2000, 3000, 4000</td>
<td>25</td>
<td>92</td>
<td>5 : 1</td>
</tr>
<tr>
<td>British Society of Audiology</td>
<td>500, 1000, 2000, 4000</td>
<td>25</td>
<td>92</td>
<td>5 : 1</td>
</tr>
<tr>
<td>Wisconsin (CHABA)</td>
<td>1000, 2000, 3000</td>
<td>35</td>
<td>92</td>
<td>4 : 1</td>
</tr>
<tr>
<td>Oregon</td>
<td>500, 1000, 2000, 4000, 6000</td>
<td>25</td>
<td>92</td>
<td>5 : 1</td>
</tr>
<tr>
<td>Ireland</td>
<td>500, 1000, 2000, 4000</td>
<td>20</td>
<td>100</td>
<td>4 : 1</td>
</tr>
</tbody>
</table>
Uses 1000, 2000, 3000, and 4000 Hz.

The equation was first proposed for detecting the early effects of noise on inner ear function.

It is now used by the Federal Government for compensation purposes.

Dobie, feels that this is not the best equation to use, since the mean frequency of speech recognition is 1600 Hz. The best representative frequencies are 500, 1000, 2000, & 4000 Hz (Dobie RA, 1998).
Handicap Equations

- Employers will argue for the use of the AAOO-1959 Equation.
- Plaintiffs will argue for the use of the NIOSH-1997 Equation.
- A good compromise is the AAO-1972 Equation.
Handicap Equations
Widely Different Results

Audiogram from a 60 yr old white male.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Ear (dB)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>45</td>
<td>65</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Left Ear (dB)</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>60</td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>

Now go to the master calculator and compare the handicap results calculated from different equations.

http://www.occupationalhearingloss.com/master_calculator.htm
The percentage of handicap due to presbycusis is often determined by ISO-1999 Annex A (Robinson Sutton's Data). It is assumed that presbycusis and noise trauma are additive but one can argue in severe hearing losses that this is not true. However, legally this is a mute point. Since, either the two are additive and the percentage of presbycusis is predicted by Robinson Sutton's Equations or if they are not additive then some of the noise trauma prevented some presbycusis from taking place, or visa versa. Thus, this percentage of noise trauma caused no harm and therefore would still not be compensatable.
It is assumed with all of the calculators that hearing loss due to noise and presbycusis are additive.

ISO 1999 compression factor is applied when projecting audiometric data.

Hearing Loss = ARL + NIL - (ARL * NIL) / 120

ARL: Age Related Loss, NIL: Noise Induced Loss
Handicap Equations
Presbycusis used to Project Hearing Loss

- Answer the Question: Is the hearing loss in the patient’s employment exit audiogram greater than that expected from the effects of aging on the pre-employment audiogram?

- Remember the test is “medically more likely than not.” In other words: Your opinion has a greater than 50% chance of being correct.
Finally, the client’s hearing handicap is used to determine the “Total Body Handicap.”

A 100% hearing handicap will have a total body handicap of 35%.
Patient Evaluation

- History is very important

- Other ear diseases can cause a hearing loss.

- Other associated systemic diseases which can cause a hearing loss.

- Other exposure to noise trauma. This is very important because noise exposure’s effects on the inner ear are finite and will cause no further damage after approximately 10 years. Thus, it could be argued that the plaintiff's occupational exposure to noise caused no harm because of his home/recreational exposure.
Patient Evaluation

- Other ear diseases can cause a hearing loss

✓ Vertigo
 - Endolymphatic Hydrops
 - Perilymph Fistula

✓ Dizziness

✓ Eustachian Tube Dysfunction

✓ Tympanic Membrane Perforation

✓ Ossicular Fixation or Discontinuity
Patient Evaluation
- Other systemic diseases which are associated with hearing loss (nosocusis)

Vascular Disease
✓ Diabetes
✓ Heart Disease
✓ Smoking
✓ Hyperlipidemia

✓ Ototoxic Drug Use
✓ Otologic Ear Infections
✓ Meningitis
✓ Head Trauma
✓ Alcohol Usage

Patient Evaluation
- Other exposure to noise trauma (Sociocusis)

✔ Home machinery – Lawn mowers, weed trimmers, etc.

✔ Chain saws

✔ Loud Music, Rock Concerts (Yassi A et al Canadian Family Physician, 1993)
Patient Evaluation
- Physical Examination

✓ Examination of the ear
✓ Tuning fork and whispered voices
✓ Full ENT examination
Patient Evaluation
- Audiological Examination

- No exposure to noise for 24 hrs.
- Air & Bone Conduction
- Speech Reception Thresholds
- Speech Discrimination
- If unilateral – Stenger Testing
- Tympanometry
Calculation of Hearing Handicap and Presbycusis

Compare the post-employment audiogram with the pre-employment audiogram. Is the sensorineural loss in excess of what would be normally predicted by presbycusis?

Pre-employment: 30 yr old white male

<table>
<thead>
<tr>
<th>Frequency</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Ear (dB)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>45</td>
<td>65</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Left Ear (dB)</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>60</td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>

Post-employment: 65 yr old white male

<table>
<thead>
<tr>
<th>Frequency</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Ear (dB)</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>60</td>
<td>80</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Left Ear (dB)</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>75</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

http://www.occupationalhearingloss.com/master_calculator.htm